Multiconfigurational Quantum Chemistry

Björn O. Roos as told by RL
Department of Theoretical Chemistry
Chemical Center
Lund University
Sweden

April 20, 2009

The Slater determinant

Using the spin-orbitals, we can construct anti-symmetric N-electron functions as Slater determinants:

$$
\Phi_{K}=\hat{A}\left\{\phi_{K 1}\left(x_{1}\right), \phi_{K 2}\left(x_{2}\right) \cdots, \phi_{K N}\left(x_{N}\right)\right\}
$$

where $x=\mathbf{r}, s$ and \hat{A} is an anti-symmetrizer. The number of such determinants is

$$
K=\binom{2 m}{N}
$$

Weyl's Formula

UNIVERSITY
Number of molecular obrtals: n
Number of spin-orbitals: $2 n$
Number of electrons: N
Spin qauntum number S
The Number of configuration state functions (CSF's) is:

$$
K(n, N, S)=\frac{2 S+1}{n+1}\binom{n+1}{\frac{1}{2} N-S}\binom{n+1}{\frac{1}{2} N+S+1}
$$

The number of singlet states

N / n	2	4	6	8	10	12	14	16	18	20
2	3	10	21	36	55	78	105	136	171	210
4	1	20	105	336	825	1716	3185	5440	8721	13300
6	-	10	175	1176	4950	15730	41405	95200	197676	379050
8	-	1	105	1764	13860	70785	273273	866320	2372112	5799465
10	-	-	21	1176	19404	169884	1002001	4504864	$*$	$*$
12	-	-	1	336	13860	226512	2147145	$*$	$*$	$*$
14	-	-	-	36	4950	169884	2760615	$*$	$*$	$*$
16	-	-	-	1	825	70785	2147145	$*$	$*$	$*$
18	-	-	-	-	55	15730	1002001	$*$	$*$	$*$
20	-	-	-	-	1	1716	273273	$*$	$*$	$*$
22	-	-	-	-	-	78	41405	4504864	$*$	$*$
24	-	-	-	-	-	1	3185	866320	$*$	$*$
26	-	-	-	-	-	-	105	95200	$*$	$*$
28	-	-	-	-	-	-	1	5440	2372112	$*$
30	-	-	-	-	-	-	-	136	197676	$*$
32	-	-	-	-	-	-	-	1	8721	5799465
34	-	-	-	-	-	-	-	-	171	379050
36	-	-	-	-	-	-	-	-	1	13300
38	-	-	-	-	-	-	-	-	-	210
40	-	-	-	-	-	-	-	-	-	1

The Full CI Method

We can expand the wave function in the determinants:

$$
\Psi=\sum_{K} C_{K} \Phi_{K}
$$

Inserting into the Scrödinger equation and integrating gives the Secular Equation:

$$
\sum_{L}\left(H_{K L}-E \delta_{K L}\right) C_{L}=0
$$

This is called Full CI and becomes an exact solution in the limit of a complete basis set.

Molecular Orbitals for the H_{2} Molecule

Use a minimal basis set: $\left(1 s_{A}, 1 s_{B}\right)$
The MO's are given by symmetry:
$\sigma_{g}=N_{g}\left(1 s_{A}+1 s_{B}\right), \sigma_{u}=N_{u}\left(1 s_{A}-1 s_{B}\right)$
The closed shell HF configuration is: $\Phi_{1}=\left(\sigma_{g}\right)^{2}=\sqrt{\frac{1}{2}}\left|\sigma_{g} \alpha, \sigma_{u} \beta\right|$
With the spin-orbitals: $\phi_{1}=\sigma_{g} \alpha$ and $\phi_{2}=\sigma_{u} \beta$

Dissociation of H_{2} in closed shell HF Theory

The HF function is: $\Phi_{1}=\sqrt{\frac{1}{2}}\left|\sigma_{g} \alpha \sigma_{g} \beta\right|=\sigma_{g}(1) \sigma_{g}(2) \Theta_{2,0}$, where $\sigma_{g}(1)=N_{g}\left(1 s_{A}+1 s_{B}\right)$.

$$
\begin{aligned}
\Phi_{1} & =N_{g}^{2}\left\{1 s_{A}(1) 1 s_{A}(2)+1 s_{B}(1) 1 s_{B}(2)\right. \\
& \left.+s_{A}(1) 1 s_{B}(2)+s_{B}(1) 1 s_{A}(2)\right\} \Theta_{2,0} .
\end{aligned}
$$

Thus we have for large R: $\Phi \propto \Phi(H+H)+\Phi\left(H^{+}+H^{-}\right)$.
The energy at dissociation is:
$E(r=\infty)=\frac{1}{2}\left(E(2 H)+E\left(H^{+}\right)+E\left(H^{-}\right)\right) \approx E(2 H)+6.66 \mathrm{eV}$.

Correct Wave Function for $R=\infty$

$$
\Phi_{\infty}=\left\{s_{A}(1) 1 s_{B}(2)+s_{B}(1) 1 s_{A}(2)\right\} \Theta_{2,0}
$$

with no ionic terms. They are important at $R=R_{e}$ but should disappear at $R=\infty$. Now introduce a new configuration:

$$
\begin{aligned}
\Phi_{2} & =\sqrt{\frac{1}{2}}\left|\sigma_{u} \alpha, \sigma_{u} \beta\right|=\sigma_{u}(1) \sigma_{u}(2) \Theta_{2,0} \\
\sigma_{u}(1) & =N_{u}\left(1 s_{A}-1 s_{B}\right) \\
\Phi_{2} & =N_{u}^{2}\left\{1 s_{A}(1) 1 s_{A}(2)+1 s_{B}(1) 1 s_{B}(2)\right. \\
& \left.-s_{A}(1) 1 s_{B}(2)-s_{B}(1) 1 s_{A}(2)\right\} \Theta_{2,0} .
\end{aligned}
$$

The Two Configurational Solution

We find immediately that:

$$
\Phi_{\infty}=\sqrt{\frac{1}{2}}\left\{\Phi_{1}-\Phi_{2}\right\}
$$

Assume now for all R :

$$
\Phi=C_{1} \Phi_{1}+C_{2} \Phi_{2}
$$

The coefficients depend on R :

$$
\begin{array}{ll}
R \approx R_{e} & C_{1} \approx 1 \quad C_{2} \approx 0 \\
R=\infty \quad C_{1} \approx \sqrt{\frac{1}{2}} \quad C_{2} \approx-\sqrt{\frac{1}{2}}
\end{array}
$$

The Energy of H_{2} as a Function of the Distance R

	$R_{e}(\AA \AA)$	$D_{e}(\mathrm{eV})$	$\omega_{e}\left(\mathrm{~cm}^{-1}\right)$	
SCF	0.736	3.63	4424	$\left(\Phi_{1}\right)$
MCSCF	0.757	4.13	4355	$\left(\Phi_{1}, \Phi_{2}\right)$
Expt.	0.741	4.75	4401	

The Quantum Chemical Description of a Chemical Bond Involves both the Bonding and the Antibonding Orbital! Natural Occupation Numbers for the Orbital Pair:

A More Complicated Example: Cr_{2}

The chromium atom has six unpaired electrons, $(3 d)^{5}(4 s),{ }^{6} S$
These atomic orbitals can be used to construct the following molecular orbitals:

$$
\text { bonding: } 4 s \sigma_{g}, 3 d \sigma_{g}, 3 d \pi_{u}, 3 d \delta_{g}
$$

antibonding: $4 s \sigma_{u}, 3 d \sigma_{u}, 3 d \pi_{g}, 3 d \delta_{u}$
A sextuple bond can be formed!
Around 3000 configurations are needed for a correct description of the dissociation process.

The Natural Orbital Occupation Numbers for Cr_{2}

Comparing $\mathrm{Cr}_{2}, \mathrm{Mo}_{2}$, and \mathbf{W}_{2}

	Cr	Mo	W
$\mathrm{s} \sigma_{g}$	1.90	1.92	1.93
$\mathrm{~s} \sigma_{u}$	0.10	0.08	0.07
$\mathrm{~d} \sigma_{g}$	1.77	1.89	1.88
$\mathrm{~d} \sigma_{u}$	0.23	0.11	0.12
$\mathrm{~d} \pi_{u}$	1.81	1.90	1.91
$\mathrm{~d} \pi_{g}$	0.19	0.10	0.09
$\mathrm{~d} \delta_{g}$	1.58	1.78	1.81
$\mathrm{~d} \delta_{u}$	0.42	0.22	0.19
Bond order	4.46	5.17	5.19
$\mathrm{D}_{0}(\mathrm{eV})$	$1.65(1.53 \pm 0.06)$	$4.41(4.48)$	$5.37(5 \pm 1)$
$\mathrm{R}_{e}(\AA)$	$1.66(1.68)$	$1.95(1.94)$	2.01()
$\omega_{e}\left(\mathrm{~cm}^{-1}\right.$	$413(452)$	$459(477)$	$322(337)$

Potential curves for $\mathrm{Cr}_{2}, \mathrm{Mo}_{2}$, and W_{2}

Construction of the MCSCF wave function:
Divide the occupied MO's into two groups:

Inactive Orbitals Occ.No. 2
Active Orbitals Occ.No. Varies

Include all electronic configurations that can be obtained by distributing the active electrons among the active orbitals ion all possible ways consistent with a given overall spin and space symmetry.

This is the Complete Active Space (CAS) wave function
The CASSCF method: Optimize the Cl coefficients and the MO's for a CAS wave function. UNIVERSITY

Orbital Spaces for CAS Wave Functions

Unoccupied Orbitals

Active Orbitals

Inactive Orbitals

The Restricted Active Space (RAS) SCF

 MethodDivide the occupied MO's into four groups:

Inactive Orbitals Occ.No. 2
RAS1 Orbitals
RAS2 (Active) Orbitals Occ.No. Varies
RAS3 Orbitals
Max number of electrons

This is thus a CAS with the additional possibility to excite out of some doubly occupied orbitals and into some virtual orbitals.

Unoocupied Orbitals

RAS 3 Orbitals

RAS 2 Orbitals

RAS 1 Orbitals

Inactive Orbitals

Some Typical Ras Wave Functions

- Closed Shell SCF (RAS1, RAS2, RAS3 empty).
- SDTQ...CI with a closed shell reference function (RAS2 empty).
- CASSCF (RAS1 and RAS3 empty).
- SDCI with a CASSCF reference (max two holes in RAS1 and max two electrons in RAS3).
- Polarization Cl (max one hole in RAS1).
- RASSCF is useful to determine active spaces and input orbitals for CASSCF.

In second order perturbation theory you solve a set of linear equations:

$$
\left(\hat{H}_{0}-E_{0}\right) \Psi_{1}=\hat{V} \Psi_{0}
$$

The zeroth order Hamiltonian \hat{H}_{0} is defined in terms of a one-electron Hamiltonian (usually) \hat{F} :

$$
\hat{H}_{0}=\hat{P}_{0} \hat{F} \hat{P}_{0}+\hat{P}_{I} \hat{F} \hat{P}_{I}
$$

where \hat{P}_{0} and \hat{P}_{I} are projection operators onto the reference function and the interacting configuration space, respectively.

The generalized Fock operator

The generalized Fock operator:

$$
\hat{F}=\sum_{p, q} F_{p q} \hat{E}_{p q},
$$

where the matrix elements are defined as:

$$
F_{p q}=h_{p q}+\sum_{r, s} D_{r s}\left[(p q \mid r s)-\frac{1}{2}(p s \mid r q)\right]
$$

for inactive, i, half-occupied,t, and virtual, a, orbitals we have:

$$
\begin{aligned}
F_{p p} & =-(I P)_{p} \\
F_{a a} & =-(E A)_{a} \\
F_{t t} & =-\frac{1}{2}\left((I P)_{t}+(E A)_{t}\right)
\end{aligned}
$$

Shift for exciting into this orbital:

$$
\begin{equation*}
\sigma_{p}^{(E A)}=\frac{1}{2} D_{p p}\left((I P)_{p}-(E A)_{p}\right) \tag{2}
\end{equation*}
$$

Shift for exciting out of this orbital:

$$
\begin{equation*}
\sigma_{p}^{(I P)}=-\frac{1}{2}\left(2-D_{p p}\right)\left((I P)_{p}-(E A)_{p}\right) \tag{3}
\end{equation*}
$$

Replace $\left((I P)_{p}-(E A)_{p}\right)$ with an average value: ϵ :

$$
\begin{align*}
\sigma_{p}^{(E A)} & =\frac{1}{2} D_{p p} \epsilon \tag{4}\\
\sigma_{p}^{(I P)} & =-\frac{1}{2}\left(2-D_{p p}\right) \epsilon \tag{5}\\
& 23
\end{align*}
$$

- Calculations of 49 diatomic molecules, all over the periodic table.
- The RMS error in D_{e} is reduced from 0.2 to 0.1 eV .
- For the molecules $\mathrm{N}_{2}, \mathrm{P}_{2}$, and As_{2} was reduced from 0.45 eV to less than 0.15 eV .
- Similar improvements were obtained for excitation and ionization energies.
- The Optimial value for ϵ is 0.25 au.
- H_{0}-IPEA is the standard option in MOLCAS-6.4

Multi-state CASPT2

- Treats several states simultanously at the CASPT2 level.
- Useful when there are states of the same symmetry close in energy.
- Separate Rydberg and valence excited states.
- Compulsory when studying avoided crossings, conical intersections, etc.

Two excited states of Ethene
CASPT2 MS-PT2 Expt.

The V-state:			
$\mathrm{dE}(\mathrm{eV})$	8.45	7.98	8.0
$\left.<x^{2}\right\rangle$	52.0	20.1	-
The $3 \mathrm{~d} \pi$ state: $\mathrm{dE}(\mathrm{eV})$ 8.93 9.40 9.33 $\left.<x^{2}\right\rangle$ 50.1 81.7 -			

Choosing the active space

- Sometimes trivial, sometimes more difficult, sometimes impossible.
- It is necessary to know something about the electronic structure!
- Two problems must be solve: The number of active orbitals in each symmetry and the shape of them (the input orbitals)
- Use MOLCAS-GV to identify the orbitals in the active space.
- In difficult cases, run RASSCF calculations with larger active space
- Ideally: orbitals with occupation numbers in the range 0.02-1.98 should be active.

LUND UNIVERSITY

The active space for the molecule $\mathrm{H}_{2} \mathrm{CUH}_{2}$

Main group molecules

- For Li, B, C: choose $2 \mathrm{~s}, 2 \mathrm{p}$ as active (four orbitals).
- For N, O, F: 2s can be left inactive (three orbitals).
- A molecule like $\mathrm{S}_{3} \mathrm{O}$ needs twelve active orbitals (16in 12). This allows all transformations to be studied.
- CH bonds can often be left inactive. A molecule like butadiene $\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)$ then needs 12 active orbitals (12in 12). You can now break all CC bonds.
- A long alkyl chain with an active end group only needs orbitals there to be active.
- The choice of active space does not limit the size of molecules that can be studied.
- All π - orbitals should be active, if possible. Otherwise select by energy criteria. Also depends on how large fraction of the spectrum shall be computed.
- Add Rydberg orbitals, when needed (above 5 eV for first row). Don't describe Rydberg states with diffuse orbitals on each atom!!
- Defined the charge center of the ion. Place specially selected Rydberg basis functions there.
- A large library of calculations exists. Consult the literature.
- This is a more difficult case.
- For $\mathrm{Cr}-\mathrm{Cu}$ one needs to account for the double shell effect, at least if the d-orbital occupation changes in the process studied.
- This is less important for second and third row atoms. In general they are easier than the crowded first row.
- The general rule is that all orbitals that have d-character should be included. For example: the molecules $\mathrm{Cr}(\mathrm{CO})_{6}, \mathrm{Fe}(\mathrm{CO})_{5}$ and $\mathrm{Ni}(\mathrm{CO})_{4}$ needs that active space 10in10.
- High oxidation numbers need more active orbitals because bonds become very covalent (large charge transfer): Example $\mathrm{MnO}_{4}^{-}: 24 \mathrm{in} 17$ (all 3d and $\mathrm{O}(2 \mathrm{p}) . /$ sbin/ifconfig)
- Recommended reading: K. Pierloot, Mol. Phys. 101, 2083 (2003).

CASSCF/CASPT2 calculations with different active spaces. Empirical addition of relativistic effects. State specific CASSCF calculations.

CASPT2 results for excitation from $\mathrm{d}^{9} \mathrm{~s}^{1},{ }^{3} \mathrm{D}$ (in eV)

State	SCF	3d,4s	$3 \mathrm{~d}, 4 \mathrm{~s}, 4 \mathrm{p}$	$3 \mathrm{~d}, 3 \mathrm{~d}{ }^{\prime}, 4 \mathrm{~s}, 4 \mathrm{p}$	with 3 p corr.	expt.
$\mathrm{d}^{8} \mathrm{~s}^{2},{ }^{3} \mathrm{~F}$	-1.62	0.47	0.22	-0.18	-0.08	0.03
$\mathrm{~d}^{10},{ }^{1} \mathrm{~S}$	4.35	0.40	0.42	1.87	1.77	1.74
$\mathrm{~d}^{9} \mathrm{~s}^{1},{ }^{1} \mathrm{D}$	0.33	0.33	0.32	0.25	0.32	0.33

Lanthanides and Actinides

Lanthanides

The $4 f$ shell is inert but has to be kept active.
$5 d, 6 s$ ($6 p$) the most important orbitals.
Often very ionic complexes. Only 4f active.
Covalent bonds difficult because large demands on the active space.
High spin in the f-shell helps (ex: $\mathrm{Gd}_{2}, \mathrm{~S}=7$).

Actinides

In principle: 5f,6d,7s active (13 orbitals).
But: actinides are often highly charged: only $5 f$ active.
But: covalent bonding is not unusual. Example uranyl, UO_{2}^{2+}, which needs a 12in12 active space.
Beware: nothing is trivial in actinide chemistry.

The RASSCF State Interaction Method, RASSI (P.-Å. Malmqvist, 1986)

- Assume a set of RASSCF(CASSCF) wave functions have been computed.
- For each pair of wave functions, transform to a set of bi-orthonormal orbitals. Transform the corresponding Cl wave functions to the new basis.
- It is now easy to compute transition density matrices (1- and 2-). Routinely used to compute transition dipole moments.
- Use them to compute the Hamiltonian matrix elements. Solve the Cl problem.
- Can be used to mix many RAS(CAS) states (more than 200 have been used).
- Perform CASSCF/CASPT2 calculations on the electronic states that are expected to interact via SO coupling.
- Set up the SO Hamiltonian using AMFI integrals and (eventually) CASPT2 energies. Compute the total interaction matrix with RASSI-SO.
- Diagonalize to obtain the final energies and wave functions.

