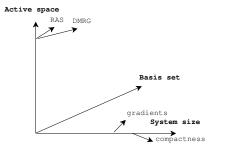
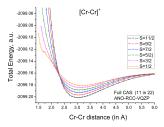
Take it to the limit


Valera Veryazov Valera.Veryazov@teokem.lu.se

Department of Theoretical Chemistry Lund University, Sweden

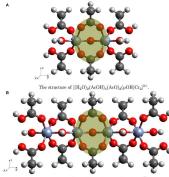
- Some calculations are "big".. How to run them faster?
- My recent big calculations
- Review of survey about Molcas usage
- New benchmark suite
- Some performance results and recommendations



Different bottlenecks will be important for different types of calculations.

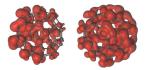
Let's look at main challenges for large calculations.

Cr_2^+

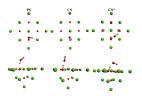

- Large basis set: ANO-RCC-VQZP (7s6p4d3f2g1h)
- Large active space: 11 electrons, 22 orbitals (CASSCF)
- CASSCF: Number of CSFs 179,345,082 1 iteration: 7h, converged solution: more than a week
- CASPT2: 2 days

challenges: large memory, long computation time *L. Ungur, PÅMalmqist, VV, work in progress*

MOF MIL-53(Cr)


- Periodic system, so some claster representation is needed
- 4 (or 2) Cr atoms, so limited CAS
- large amount of atoms

The structure of $[(H_2O)_2(AcOH)_4(AcO)_6(\mu OH)_3Cr_4]^{3+}$.


challenges: large memory, large disk, long computation time *O. Weser, VV, Frontiers in Chemistry 2017*

- dimer, as a representation of solid $C_{60}K_n$
- large amount of atoms
- high symmetry, so coarse choice of active space

challenges: large memory, enormous disk, long computation time *F. Naderi, VV, J. Chem Chem Eng 2017; F. Naderi, VV AIP 2017*

- cluster representation of surface
- large amount of atoms (compact)
- geometry optimization is impossible by SLAPAF

challenges: large memory, large disk, long computation time *V. Vysotskiy, VV, work in progress*

My (biased) view (before I prepared this presentation)

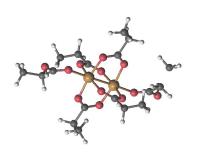
- Optimized BLAS is important (sorry, I will use "MKL" to make it short)
- Parallel MOLCAS should be used with care
- I don't know what is more efficient: use threaded BLAS or parallel Molcas
- Physical memory is essential
- *MOLCAS_MEM* * *MOLCAS_NPROCS* should be less than RAM

56 responses out of about 400. Installation :

- 45% serial with Molcas provided BLAS
- 15% serial with optimized BLAS
- \bullet 20% parallel with Molcas provided BLAS
- 20% parallel with optimized BLAS

The majority uses default installation. And this is obviously a bad idea

But what about others???


- For those who run Molcas in parallel: typical MOLCAS_NPROCS = 4 or 8.
 Very few use more than 8.
- Those, who uses MOLCAS_MEM > 8Gb usually run MOLCAS in serial
- RAM per workstation in many cases 64Gb or 128Gb
- number of memory per core can be small, but only in a few cases users overloaded MOLCAS_MEM

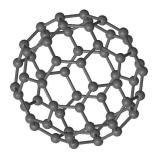
- 8 new heavy tests
- Different dimensions of big (slides are coming soon)
- RASSCF and CASPT2 codes
- no benchmarking for SEWARD (it takes a minor fraction)
- Potential candidates for DMRG testing (work in progress)

Testing platforms:

- ODIN 6 cores Xeon E5-2603, 128Gb RAM, SSD disk
- AURORA 20 cores Xeon E5-2650, LUNARC node 64Gb RAM, no SSD
- GARM 24 cores Xeon E5-2650, 32Gb RAM, no SSD

Test 981: large molecule, tiny active space

Fina


 $Cu_2C_{18}O_{12}H_{32}$ - 64 atoms, ANO-RCC-VDZ 388 bf, RICD

Active - 2, CSF - 3 CAS, SS, ITER=35

Memory - 4Gb Odin: RASSCF= 49', CASPT2=21'

Possible DMRG 4s3d - 22

Test 982: large molecule, small active space

 C_{60}^{-2} - 60 atoms, ANO-S-VDZ 540 bf, RICD

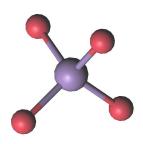
Active - 6, CSF - 15 CAS, SS, ITER=22

Memory - 8Gb Odin: RASSCF= 1h 53', CASPT2=52'

Possible DMRG 8HOMO +3LUMO; 3HOMO+3LUMO

Test 983: tiny molecule, large active space

Cr₂ - 2 atoms, ANO-RCC-VQZP* 244 bf, Chol


Filea.

Active - 12, CSF - 226512 CAS, SS, ITER=64

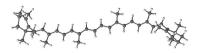
Memory - 2Gb Odin: RASSCF= 1h 8', CASPT2=3'

Possible DMRG 12; +10(22)

Test 984: small molecule, huge active space

Flea

MnO₄ - 5 atoms, ANO-RCC-VDZP 90 bf, Exact Integrals


Active - 17, CSF - 2M CAS, MS, Symmetry, ITER=12

Memory - 2Gb Odin: RASSCF= 4h 2', CASPT2=28'

Possible DMRG 17; +4dMn=22

Test 985: large molecule, large active space

 $\rm C^{}_{40}H^{}_{56}$ - 96 atoms, ANO-S-VDZP 840 bf, RICD

File.a.

Active - 12, CSF - 113456 CAS, MS, ITER=11

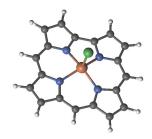
Memory - 8Gb Odin: RASSCF= 1h 46', CASPT2=6h 26'

Possible DMRG ??

Test 986: large molecule, huge active space

Eleca

 $C_{44}N_{19}H_{15}$ - 38 atoms, ANO-RCC-VDZP 406 bf, RICD

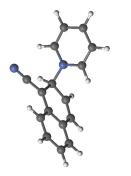

Active - 15, CSF - 2M CAS, MS, ITER=12

Memory - 4Gb Odin: RASSCF= 1h 16', CASPT2=32'

Possible DMRG 15 ... till all :)

Test 987

Files.


FeClC₁₉N₄H₁₁ - 36 atoms, ANO-RCC-VDZP 429 bf, RICD

Active - 25, CSF - 1497 RAS, SS, Symmetry, ITER=13

Memory - 4Gb Odin: RASSCF= 10', CASPT2=2h 42'

Possible DMRG 25

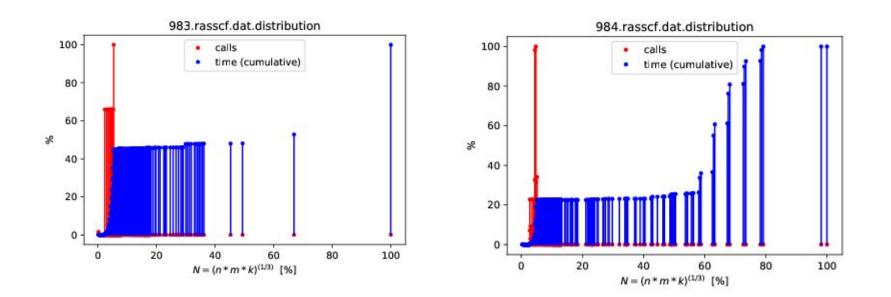
Test 988: large molecule, huge active space

Field

 $C_{16}N_2H_{12}$ - 30 atoms, ANO-S-VDZP 312 bf, Cholesky

Active - 14, CSF - 2M CAS, MS=4, ITER=10

Memory - 4Gb Odin: RASSCF= 2h 28', CASPT2=13h 4'


Possible DMRG 14; 23

Profiling

- 1. A bit messy: large tests: long time, large data
- 2. Callgrind number of BLAS calls
- 3. NVIDIA profiling tools for NVBLAS decision
- 4. RASSCF: Mostly DGEMM
- 5. CASPT2: DGEMM and eigenvectors solvers
- 6. Enormous amount of small and middle size calls
- 7. Presence of huge calls (problematic for GPU due to memory limitations)

Size and time in DGEMM profiling

N of DGEMM calls (test 982): 5 526 982 672, max size 66961

Dilemma: how to use the machine in the most efficient way?

We have parallelization in MOLCAS and parallelization in BLAS/LAPACK

The latter is done at OMP level, and probably more professional...

And oh yes, 45% - standard installation, but the rest is in equal portions: **serial+MKL**, **parallel, parallel+MKL**

So, don't forget to make a pick!

How to read the results. Theoretical scaling

Default Serial/NoMKL will be scaled to 64 for simplicity (all tests run more that 1h)

If BLAS is about 50% of the time, and 'MKL' is about twice more efficient, so = 75%

	MOLCAS BLAS	MKL
serial	64	48
NPROCS=2	32	
4	16	
8	8	
16	4	

RASSCF

WORST	MOLCAS BLAS	MKL	'BEST'	MOLCAS BLAS	MKL
serial	64	50	serial	64	30
NPROCS=2	42	32	NPROCS=2	35	16
4	24	18	4	18	9
8	18	12	8	13	kaboom
16	14	10	16	11	kaboom

CASPT2

WORST	MOLCAS BLAS	MKL	В	MOLCAS BLAS	MKL
serial	64	42	serial	64	23
NPROCS=2	47	34	NPROCS=2	26	15
4	33	30	4	17	12
8	28	31	8	13	11
16	46		16	15	12

Observations/Conclusions

- 1. MKL sequential and MKL threaded vary up to 20% in both directions
- 2. Usage of SSD gives a speed up to 50% (sometimes)
- 3. Several cases fails in RASSCF parallel if MKL is used.
 [One] bug is localised but it might be more of that kind
- 4. RASSCF scales well up to 16 cores. In parallel usage of MKL allows to improve timing, but just a bit
- 5. CASPT2 scales well up to 4-8. Even in cases where memory is not exhausted
- 6. Perhaps, for huge calculations, a larger scaling is not needed, due to memory requirements
- 7. Use of MKL is fantastic, but only if you have to run Molcas in serial