

The Local Properties ofthe Electronic Structure

A Bridge between Theory and Experiment

Valera Veryazov

Valera.Veryazov@teokem.lu.se

Department of Theoretical ChemistryLund University

Atomic Valency in chemistry textbooks

*NaCl KClO*3

table salt Berthollet's salt

Na+¹*Cl*−1 Na^ICl^I

 K^{+1} (*ClO*3)−1 K^I *Cl*^{*V*}*O*^{*II*} ${}^{V}O_3^{II}$

The rule: *Use stoichiometry and bond counting!*

Drawbacks of 'arithmetic' approach

Stoichiometry:

- valency should change under bond breaking or bondformation.
- obviously fails for systems with bonds between same element: organic molecules, allotropes

Bond counting:

- ignores bond lengths
- can be used only in covalent systems: crystalline *NaCl*: ⁶ neighbours, *CsCl*: 8.
- how count bonds in molecules with Van der Waals bonds, dimers, carbonyls?

Can quantum mechanics help?

The expectation value of an operator: $\Big\langle$ $\langle \hat{\Omega} \rangle$ = $\int \psi^*$ * $\hat{Ω}$ ψ $dτ=$ $\Big\langle$ $\ket{\psi|\hat{\Omega}|\psi}$

Examples of observables: energy, dipole moment.

Atomic charge, valency are not observable! we MUST rely on the chemical sense to obtain themas an interpretation of the results.

To answer "Can we use *NaCl* instead of *KClO*3?"one has to study reactions...

Outline

- methods to compute atomic valency
- introduction to density matrix formalism
- local properties of electronic structure
- practical examples

Methods to compute valency

- improved bond counting
	- ◆ valency index
- geometry related counting of electrons
	- ◆ atom-in-molecule
- density matrix analysis
	- various atomic charges
	- ◆ bond orders and covalency
	- ◆ full valency

Valency index

Buckingham potential: $\Phi_{12}(r) = Aexp(-Br) - C/r^6$ *Used as ^a pair potential in ionic systems.*

Valency index by I.D.Brown:

- 1. select trusted crystal structures withknown atomic valencies
- 2. calibrate *^A*, *^B* and *^C* to reproduce atomic valencies (instead of energy)
- 3. verify on unknown structures

Result: (in 1985) about 10% of crystal structures in ICSD database have atoms with "strange" atomic valencies.Or, they have "strange" interatomic distances.

Atom-in-molecule

Quantum chemistry can compute electron densityas ^a function of coordinates. *KClO*3₃ density computed by Hartree-Fock method:

Subspaces: i:30; s:27;

The problem: how to separate atoms and bonds?

Geometry based separation of atoms

*KClO*3 $_3$ density minus 'individual ions' density:

K is almost ^a cation, *O* and *Cl* are too mixed in space. Bader analysis: zero flux surfaces.

Electrostatic potential charges

We can vary point charges on atoms, in order to reproduce (in least-squares mean) the computed density(in the set of points, e.g. in ^a grid).

For molecules with small amount of atoms, extra centers with atomic charge should be used.

main problem: low transferability among similar molecules

Density matrix

Density matrix is the result of any quantum chemical calculation: Hartree-Fock, DFT, multiconfigurational, etc. *^Dµν* =∑*iθiC* $C_{\mu i}C$ ∗ *νi* , where *θ* is an occupation for orbital *i*. We can construct population matrix*P*, as ^a product of density matrix and overlap matrix. $P_{\mu\nu}=(DS)_{\mu\nu}$

Trace of *P* is the number of electrons: ∑ *µ^Pµµ* $=N$

Population matrix

Now we can split *P* into atomic blocks ($\mu \in A$) and assosiate *NA* with an atom. For non-atomic basis set we make ^a projection first.

•.

Population analysis

Density matrix and population matrix are invariant tounitary transformation, but *NA* are not.

- Mulliken charges (*R. Mulliken, ¹⁹⁵⁵*)
- Löwdin charges (*P-O. L¨owdin, ¹⁹⁵⁵*)(orthogonalized by*S*1/2)
- Natural Bond Order (NBO) (*F. Weinhold, ¹⁹⁸³*)(orthogonalized with constrained occupations)
- Loprop charges (*G.Karlström*, 2004) (separate orthogonalization for occupied and virtuals)

Why do we need that many?

If we take *NaCl* molecule, same method (HF), but different basis sets: from minimal to extended (independently). Mulliken charges vary from 0.58 to 0.96 Loprop charges vary from 0.85 to 0.89

Methyl ethylene sulfide:

Local properties from density matrix

mixing ionic and covalent

in ionic case: |*Q^A*[|] [≃] *valency* $\frac{1}{2}$ covalent case: $C_A \simeq$ *valency CA* $\frac{H_2O}{H}$ ^H 0.33 0.88 Q_A . . . ^O -0.66 1.73 $NaCl$ Na 0.88 0.54 Q_A *CA* Cl -0.88 0.54 *KClO*3K *QA* ^K 0.89 0.03 *CA*. . . Cl 1.78 4.05
O -0.89 1.42 -0.89

Full atomic valency

How to combine two opposite cases: covalent and ionic? ^A magic formula:

$$
V_A = \frac{1}{2} \left(C_A + \sqrt{C_A^2 + 4Q_A^2} \right) \qquad (V. Veryazov, 1991)
$$

• $V_A \simeq |Q_A| + \frac{1}{2}$ *take fully transferred electrons and add half of* $\frac{1}{2}C_A$, if *CA* $_A$ is small *covalent pairs.*

•
$$
V_A \simeq C_A
$$
, if $|Q_A|$ is small

But, does it work better?

Sometime it does!

Problems:

- calculations have to be performed withgoo^d quality basis set But interpretation results are more stable with compac^t basis sets
- description of the covalent bond: high bond orders are less reliable
- description of delocalized metallic bond

How to treat discrepancies?

Making ^a new formula for computed atomic valencywe want to match the expected value. But what if we ge^t 2.3, or 2.7 instead of 2?

- is it a new valency state?
- is it a defect of calculation?
- is it ^a defect of interpretation?

Mixed valency

*Pb*2*O*3 Space group=*P*21/*^a*, Z=4 3 crystal two kinds of *Pb*, both 6-coordinated by*O*

Interatomic distances: 2.08 2.14 2.16 2.17 2.26 2.28 ^Å2.31 2.43 2.44 2.64 2.91 3.00 ^ÅDo we have Pb^{III} or mixture Pb^{II} and Pb^{IV} ?

Full valency results: 2.32 and 3.94

The importance of correct density

What happens with *NaCl* molecule during dissociation?

Hartree-Fock and DFT theory ^give ionic solution, so, full valency will never become 0.

In multiconfigurational approach, e.g. CASSCF, full valency of atoms goes from ¹ to 0.

Non stoichiometric compounds

HTSC materials: *La*2*CuO*4+*x*, *YBa*2*Cu*3*O*7−*x* The formal valency of *Cu*is higher than 2, but is it Cu^{III} or O^{I} ?

Strong correlation effects influence the result of density calculations. Interpretation (charges, valency) varies dramatically

Surface relaxation

How to estimate ^a stability of ^a surface? Solution 1: compute all possible displacements, study saturation of broken bonds. Solution 2: compare valency in the bulk (unperturbed) andon the surface.

Conclusion: the local properties form an easy and convenientlanguage to describe the electronic structure, and thus connect the theoretical description and observable reality.

Thank you!

Local properties – p. 25/25