

The Local Properties of the Electronic Structure

A Bridge between Theory and Experiment

Valera Veryazov

Valera.Veryazov@teokem.lu.se

Department of Theoretical Chemistry Lund University

Atomic Valency in chemistry textbooks

NaCl table salt

*KClO*₃ Berthollet's salt

 $Na^{+1}Cl^{-1}$ $Na^{I}Cl^{I}$ $\begin{array}{c} K^{+1}(ClO_3)^{-1} \\ K^I Cl^V O_3^{II} \end{array}$

The rule: Use stoichiometry and bond counting!

Drawbacks of 'arithmetic' approach

Stoichiometry:

- valency should change under bond breaking or bond formation.
- obviously fails for systems with bonds between same element: organic molecules, allotropes

Bond counting:

- ignores bond lengths
- can be used only in covalent systems: crystalline *NaCl*: 6 neighbours, *CsCl*: 8.
- how count bonds in molecules with Van der Waals bonds, dimers, carbonyls?

Can quantum mechanics help?

The expectation value of an operator: $\langle \hat{\Omega} \rangle = \int \psi^* \hat{\Omega} \psi d\tau = \langle \psi | \hat{\Omega} | \psi \rangle$

Examples of observables: energy, dipole moment.

Atomic charge, valency are not observable! we MUST rely on the chemical sense to obtain them as an interpretation of the results.

To answer "Can we use *NaCl* instead of *KClO*₃?" one has to study reactions...

Outline

- methods to compute atomic valency
- introduction to density matrix formalism
- local properties of electronic structure
- practical examples

Methods to compute valency

- improved bond counting
 - valency index
- geometry related counting of electrons
 - ♦ atom-in-molecule
- density matrix analysis
 - various atomic charges
 - bond orders and covalency
 - full valency

Valency index

Buckingham potential: $\Phi_{12}(r) = Aexp(-Br) - C/r^6$ Used as a pair potential in ionic systems.

Valency index by I.D.Brown:

- 1. select trusted crystal structures with known atomic valencies
- 2. calibrate *A*, *B* and *C* to reproduce atomic valencies (instead of energy)
- 3. verify on unknown structures

Result: (in 1985) about 10% of crystal structures in ICSD database have atoms with "strange" atomic valencies.

Or, they have "strange" interatomic distances.

Atom-in-molecule

Quantum chemistry can compute electron density as a function of coordinates. *KClO*₃ density computed by Hartree-Fock method:

File:kclo3.grid MO:Density Level:0.040 Subspaces: i:30; s:27;

The problem: how to separate atoms and bonds?

Geometry based separation of atoms

*KClO*₃ density minus 'individual ions' density:

File:res.grid MO:Density Level:0.040

K is almost a cation, *O* and *Cl* are too mixed in space. Bader analysis: zero flux surfaces.

Electrostatic potential charges

We can vary point charges on atoms, in order to reproduce (in least-squares mean) the computed density (in the set of points, e.g. in a grid).

For molecules with small amount of atoms, extra centers with atomic charge should be used.

main problem: low transferability among similar molecules

Density matrix

Density matrix is the result of any quantum chemical calculation: Hartree-Fock, DFT, multiconfigurational, etc. $D_{\mu\nu} = \sum_{i} \theta_i C_{\mu i} C_{\nu i}^*$, where θ is an occupation for orbital *i*. We can construct population matrix *P*, as a product of density matrix and overlap matrix. $P_{\mu\nu} = (DS)_{\mu\nu}$

Trace of *P* is the number of electrons: $\sum_{\mu} P_{\mu\mu} = N$

Population matrix

Now we can split *P* into atomic blocks ($\mu \in A$) and assosiate N_A with an atom. For non-atomic basis set we make a projection first.

Population analysis

Density matrix and population matrix are invariant to unitary transformation, but N_A are not.

- Mulliken charges (*R. Mulliken*, 1955)
- Löwdin charges (P-O. Löwdin, 1955) (orthogonalized by S^{1/2})
- Natural Bond Order (NBO) (*F. Weinhold, 1983*) (orthogonalized with constrained occupations)
- Loprop charges (*G.Karlström*, 2004) (separate orthogonalization for occupied and virtuals)

Why do we need that many?

If we take *NaCl* molecule, same method (HF), but different basis sets: from minimal to extended (independently). Mulliken charges vary from 0.58 to 0.96 Loprop charges vary from 0.85 to 0.89

Methyl ethylene sulfide:

	Mulliken	NBO	Loprop	ESP
C(H2)	-0.52	-0.56	-0.24	-0.34
C(H)	-0.41	-0.37	-0.07	0.04
S	0.07	0.11	-0.09	-0.19
C(H3)	-0.57	-0.67	-0.33	-0.30

Local properties from density matrix

mixing ionic and covalent

in ionic case: $|Q_A| \simeq valency$ in covalent case: $C_A \simeq valency$ H_2O C_A Q_A 0.33 0.88 Η Ο -0.66 1.73 \overline{C}_A NaCl Q_A 0.54 Na 0.88 Cl -0.88 0.54 KClO₃ C_A Q_A Κ 0.03 0.89 Cl 1.78 4.05 -0.89 Ο 1.42

Full atomic valency

How to combine two opposite cases: covalent and ionic? A magic formula:

$$V_A = \frac{1}{2} \left(C_A + \sqrt{C_A^2 + 4Q_A^2} \right)$$
 (V.Veryazov, 1991)

- $V_A \simeq |Q_A| + \frac{1}{2}C_A$, if C_A is small take fully transferred electrons and add half of covalent pairs.
- $V_A \simeq C_A$, if $|Q_A|$ is small

But, does it work better?

Sometime it does!

H_2O	Q_A	C_A	V_A
Н	0.33	0.88	1.00
0	-0.66	1.73	1.97
NaCl	Q_A	C_A	V_A
Na	0.88	0.54	1.03
Cl	-0.88	0.54	1.03
KClO ₃	Q_A	C_A	V_A
K	0.89	0.03	0.91
Cl	1.78	4.05	4.72
Ο	-0.89	1.42	1.84

Problems:

- calculations have to be performed with good quality basis set
 But interpretation results are more stable with compact basis sets
- description of the covalent bond: high bond orders are less reliable
- description of delocalized metallic bond

How to treat discrepancies?

Making a new formula for computed atomic valency we want to match the expected value. But what if we get 2.3, or 2.7 instead of 2?

- is it a new valency state?
- is it a defect of calculation?
- is it a defect of interpretation?

Mixed valency

 Pb_2O_3 crystal Space group= $P2_1/a$, Z=4 two kinds of *Pb*, both 6-coordinated by *O*

Interatomic distances: 2.08 2.14 2.16 2.17 2.26 2.28 Å 2.31 2.43 2.44 2.64 2.91 3.00 Å Do we have *Pb^{III}* or mixture *Pb^{II}* and *Pb^{IV}*?

Full valency results: 2.32 and 3.94

The importance of correct density

What happens with *NaCl* molecule during dissociation?

Hartree-Fock and DFT theory give ionic solution, so, full valency will never become 0.

In multiconfigurational approach, e.g. CASSCF, full valency of atoms goes from 1 to 0.

Non stoichiometric compounds

HTSC materials: La_2CuO_{4+x} , $YBa_2Cu_3O_{7-x}$ The formal valency of Cuis higher than 2, but is it Cu^{III} or O^I ?

Strong correlation effects influence the result of density calculations. Interpretation (charges, valency) varies dramatically

Surface relaxation

How to estimate a stability of a surface? Solution 1: compute all possible displacements, study saturation of broken bonds. Solution 2: compare valency in the bulk (unperturbed) and on the surface.

Conclusion: the local properties form an easy and convenient language to describe the electronic structure, and thus connect the theoretical description and observable reality.

Thank you!

Local properties – p. 25/25